>
Exams
>
Mathematics
>
Limits
>
if the function f x satisfies x 1 f x 2 x 2 1 eval
Question:
If the function f(x) satisfies
\(\lim_{x\rightarrow 1}\)
\(\frac{f(x)-2}{x^2-1}\)
=
\(\pi\)
, evaluate
\(\lim_{x\rightarrow 1}\)
f(x).
CBSE Class XI
Updated On:
Oct 25, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
\(\lim_{x\rightarrow 1}\)
\(\frac{f(x)-2}{x^2-1}\)
=
\(\pi\)
\(\Rightarrow\)
\(\frac{\lim_{x\rightarrow 1} (f(x)-2)}{\lim_{x\rightarrow 1}(x^2-1)}\)
=
\(\pi\)
\(\Rightarrow\)
\(\lim_{x\rightarrow 1}\)
(f(x)-2)=
\(\pi\)
\(\lim_{x\rightarrow 1}\)
(x
2
-1)
\(\Rightarrow\)
\(\lim_{x\rightarrow 1}\)
(f(x)-2)=
\(\pi\)
(1
2
-1)
\(\Rightarrow\)
\(\lim_{x\rightarrow 1}\)
(f(x)-2)=0
\(\Rightarrow\)
\(\lim_{x\rightarrow 1}\)
f(x)-
\(\lim_{x\rightarrow 1}\)
2=0
\(\Rightarrow\)
\(\lim_{x\rightarrow 1}\)
f(x)- 2=0
∴
\(\lim_{x\rightarrow 1}\)
f(x) = 2
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If \( f(x) = \begin{cases} \frac{(e^x - 1) \log(1 + x)}{x^2} & \text{if } x>0 \\ 1 & \text{if } x = 0 \\ \frac{\cos 4x - \cos bx}{\tan^2 x} & \text{if } x<0 \end{cases} \) is continuous at \( x = 0 \), then \(\sqrt{b^2 - a^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Let \([x]\) represent the greatest integer function. If \(\lim_{x \to 0^+} \frac{\cos[x] - \cos(kx - [x])}{x^2} = 5\), then \(k =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{(\csc x - \cot x)(e^x - e^{-x})}{\sqrt{3} - \sqrt{2 + \cos x}} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
If a real valued function \( f(x) = \begin{cases} (1 + \sin x)^{\csc x} & , -\frac{\pi}{2} < x < 0 \\ a & , x = 0 \\ \frac{e^{2/x} + e^{3/x}}{ae^{2/x} + be^{3/x}} & , 0 < x < \frac{\pi}{2} \end{cases} \) is continuous at \(x = 0\), then \(ab = \)
AP EAPCET - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in CBSE Class XI exam
Using s, p, d notations, describe the orbital with the following quantum numbers.
n=1, l=0
n = 3, l=1
n = 4, l =2
n=4, l=3
CBSE Class XI
Developments Leading to the Bohr’s Model of Atom
View Solution
Write the following as intervals:
(i)
{
\(x: x ∈ R, -4 < x ≤ 6\)
}
(ii)
{
\(x: x ∈ R, -12 < x < -10\)
}
(iii)
{
\(x: x ∈ R, 0 ≤ x < 7\)
}
(iv)
{
\(x: x ∈ R, 3 ≤ x ≤ 4\)
}
CBSE Class XI
Sets and their Representations
View Solution
Reduce the following equations into intercept form and find their intercepts on the axes.
(i)
\(3x+2y-12=0\)
(ii)
\(4x-3y=6\)
(iii)
\(3y+2=0. \)
CBSE Class XI
Distance of a Point From a Line
View Solution
If A = {-1, 1}, find A x A x A.
CBSE Class XI
Relations and functions
View Solution
Convert the following into basic units:
28.7 pm
15.15 pm
25365 mg
CBSE Class XI
Percentage Composition
View Solution
View More Questions