Question:

If the function f(x) satisfies \(\lim_{x\rightarrow 1}\) \(\frac{f(x)-2}{x^2-1}\) =\(\pi\), evaluate \(\lim_{x\rightarrow 1}\) f(x).

Updated On: Oct 25, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\lim_{x\rightarrow 1}\) \(\frac{f(x)-2}{x^2-1}\) =\(\pi\)
\(\Rightarrow\)\(\frac{\lim_{x\rightarrow 1} (f(x)-2)}{\lim_{x\rightarrow 1}(x^2-1)}\) =\(\pi\)
\(\Rightarrow\)\(\lim_{x\rightarrow 1}\) (f(x)-2)=\(\pi\) \(\lim_{x\rightarrow 1}\) (x2-1)
\(\Rightarrow\)\(\lim_{x\rightarrow 1}\) (f(x)-2)=\(\pi\)(12-1)
\(\Rightarrow\)\(\lim_{x\rightarrow 1}\) (f(x)-2)=0
\(\Rightarrow\)\(\lim_{x\rightarrow 1}\) f(x)-\(\lim_{x\rightarrow 1}\)2=0
\(\Rightarrow\)\(\lim_{x\rightarrow 1}\) f(x)- 2=0
\(\lim_{x\rightarrow 1}\) f(x) = 2
Was this answer helpful?
0
0