Step 1: Identify the parabola and focus.
Parabola: \( y^2 = 5x \), so \( a = \frac{5}{4} \). Focus: \( \left( \frac{5}{4}, 0 \right) \). Axis: \( y = 0 \).
Step 2: Find the focal chord through \( P(5, 5) \).
Line through focus and \( P \): Slope = \( \frac{4}{3} \). Equation: \( y = \frac{4}{3} \left( x - \frac{5}{4} \right) \).
Step 3: Find point \( Q \).
Substitute into parabola: \( \left( \frac{4}{3} \left( x - \frac{5}{4} \right) \right)^2 = 5x \). Solve:
\[
16x^2 - 85x + 25 = 0 \quad \Rightarrow \quad x = 5, \quad x = \frac{5}{16}.
\]
\[
Q = \left( \frac{5}{16}, -\frac{5}{4} \right).
\]
Step 4: Tangent at \( Q \).
Tangent: \( y \left( -\frac{5}{4} \right) = \frac{5}{2} \left( x + \frac{5}{16} \right) \). Intersects x-axis at \( \left( -\frac{5}{16}, 0 \right) \).