The given equation of motion:
\[
Y = AX - B X^2
\]
Step 1: Finding Maximum Height
At the peak of the trajectory, \( \frac{dY}{dX} = 0 \). Differentiating:
\[
\frac{dY}{dX} = A - 2BX
\]
Setting \( \frac{dY}{dX} = 0 \),
\[
A - 2BX = 0
\]
Solving for \( X \),
\[
X = \frac{A}{2B}
\]
Substituting into the equation of motion:
\[
H_{\max} = A \cdot \frac{A}{2B} - B \left( \frac{A}{2B} \right)^2
\]
\[
H_{\max} = \frac{A^2}{2B} - \frac{A^2}{4B} = \frac{A^2}{4B}
\]
Step 2: Finding Range
The projectile reaches the ground when \( Y = 0 \). Setting \( Y = 0 \):
\[
AX - B X^2 = 0
\]
\[
X(A - BX) = 0
\]
Solving for \( X \),
\[
X = \frac{A}{B}
\]
Thus, the range \( R \) is:
\[
R = \frac{A}{B}
\]
Step 3: Computing the Ratio
\[
\frac{H_{\max}}{R} = \frac{\frac{A^2}{4B}}{\frac{A}{B}}
\]
\[
= \frac{A}{4}
\]
Thus, the correct answer is:
\[
\frac{A}{4}
\]