Step 1: Use the distance formula.
The distance between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given by:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Step 2: Substitute the given values.
Here, $(x_1, y_1) = (x, 5)$ and $(x_2, y_2) = (2, -3)$, and $d = 17$.
\[
17 = \sqrt{(2 - x)^2 + (-3 - 5)^2}
\]
\[
17 = \sqrt{(2 - x)^2 + 64}
\]
Step 3: Square both sides.
\[
289 = (2 - x)^2 + 64
\]
\[
225 = (2 - x)^2
\]
Step 4: Solve for $x$.
\[
2 - x = \pm 15
\Rightarrow
\begin{cases}
x = -13, & \text{if } 2 - x = 15
x = 17, & \text{if } 2 - x = -15
\end{cases}
\]
Step 5: Conclusion.
Hence, the values of $x$ are $-13$ and $17$.