We use the ideal gas equation:
\[
PV = nRT
\]
Rearranging for molar mass:
\[
M = \frac{dRT}{P}
\]
Given:
\[
d = 0.920 \text{ g/L}, \quad R = 0.0821 \text{ L atm mol}^{-1} \text{K}^{-1}, \quad T = 400 K, \quad P = 1 \text{ atm}
\]
Substituting values:
\[
M = \frac{0.920 \times 0.0821 \times 400}{1} = 30.05 \text{ g/mol}
\]
For a mixture of \( N_2 \) (M = 28 g/mol) and \( O_2 \) (M = 32 g/mol), the molar mass is given by:
\[
M = x \times 28 + (1-x) \times 32
\]
Solving for \( x \):
\[
30.05 = 28x + 32(1 - x)
\]
\[
30.05 = 28x + 32 - 32x
\]
\[
30.05 - 32 = -4x
\]
\[
x = \frac{1.95}{4} = 0.456
\]
Thus, the mole fraction of nitrogen is \(\boxed{0.456}\).