Step 1: Identify the elements and their cofactors.
The given matrix is:
\[
M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -1 & 7 \\ 2 & 4 & 6 \end{bmatrix}.
\]
The elements whose cofactors are \( a, b, c \) are:
- \(3\) at position \( (1,3) \),
- \(7\) at position \( (2,3) \),
- \(6\) at position \( (3,3) \).
Step 2: Recall the properties of cofactors.
The cofactor matrix \( C \) is the matrix of cofactors, and the adjoint matrix is the transpose of \( C \).
Here, \( a, b, c \) are cofactors corresponding to the elements in the third column.
Step 3: Express the problem in terms of cofactors and vectors.
We need to evaluate:
\[
\left[ a \quad b \quad c \right]
\begin{bmatrix}
1 \\ 4 \\ 2
\end{bmatrix}
+
\left[ a \quad b \quad c \right]
\begin{bmatrix}
3 \\ 7 \\ 6
\end{bmatrix}.
\]
This simplifies to:
\[
\left[ a \quad b \quad c \right]
\left(
\begin{bmatrix}
1 \\ 4 \\ 2
\end{bmatrix}
+
\begin{bmatrix}
3 \\ 7 \\ 6
\end{bmatrix}
\right)
= \left[ a \quad b \quad c \right]
\begin{bmatrix}
4 \\ 11 \\ 8
\end{bmatrix}.
\]
Step 4: Interpret the vector of cofactors \( [a \ b \ c] \).
The vector \( [a \ b \ c] \) corresponds to the cofactors of the third column of \( M \), which is the third row of the adjoint matrix \( \text{adj}(M) \) transposed.
Since the adjoint matrix satisfies:
\[
M \cdot \text{adj}(M) = (\det M) I,
\]
and the third column of \( \text{adj}(M) \) contains cofactors of the third column of \( M \).
Step 5: Use the property of matrix and adjoint.
Multiplying matrix \( M \) by the third column of \( \text{adj}(M) \) gives:
\[
M \begin{bmatrix} a \\ b \\ c \end{bmatrix} = (\det M) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.
\]
Because the product selects the third column of the identity matrix.
Step 6: Multiply \( [a \ b \ c] \) with the sum vector.
We can rewrite:
\[
\left[ a \quad b \quad c \right]
\begin{bmatrix}
4 \\ 11 \\ 8
\end{bmatrix}
= \begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 11 \\ 8 \end{bmatrix}.
\]
From Step 5:
\[
M \begin{bmatrix} a \\ b \\ c \end{bmatrix} = (\det M) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.
\]
Multiply both sides by the vector \( \begin{bmatrix} 1 & 4 & 2 \end{bmatrix} \) from the left:
\[
\begin{bmatrix} 1 & 4 & 2 \end{bmatrix} M \begin{bmatrix} a \\ b \\ c \end{bmatrix} = (\det M) \begin{bmatrix} 1 & 4 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = (\det M) \times 2.
\]
Since this value is related to the expression, but the sum simplifies directly to zero because the cofactors \( a, b, c \) satisfy the properties of cofactors and determinants such that:
\[
[a \quad b \quad c] \cdot \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = - [a \quad b \quad c] \cdot \begin{bmatrix} 3 \\ 7 \\ 6 \end{bmatrix}.
\]
Step 7: Final evaluation.
Therefore:
\[
\left[ a \quad b \quad c \right]
\begin{bmatrix}
1 \\ 4 \\ 2
\end{bmatrix}
+
\left[ a \quad b \quad c \right]
\begin{bmatrix}
3 \\ 7 \\ 6
\end{bmatrix} = 0.
\]