We are given matrix:
\[
A = \begin{bmatrix}
1 & 2 & 3
4 & -1 & 7
2 & 4 & 6
\end{bmatrix}
\]
and the cofactors of entries 3, 7, and 6, which are the elements \( A_{13}, A_{23}, A_{33} \) respectively. We define:
\[
[a\ b\ c] = \text{cofactors of } (3, 7, 6)
\]
We need to evaluate:
\[
[a\ b\ c] \cdot \left( \begin{bmatrix} 1
4
2 \end{bmatrix} + \begin{bmatrix} 3
7
6 \end{bmatrix} \right)
= [a\ b\ c] \cdot \begin{bmatrix} 4
11
8 \end{bmatrix}
\]
Now calculate each cofactor:
- \( a = \text{Cofactor of } 3 = (-1)^{1+3} \cdot \begin{vmatrix} 4 & -1
2 & 4 \end{vmatrix} = 1 \cdot (16 + 2) = 18 \)
- \( b = \text{Cofactor of } 7 = (-1)^{2+3} \cdot \begin{vmatrix} 1 & 2
2 & 4 \end{vmatrix} = -1 \cdot (4 - 4) = 0 \)
- \( c = \text{Cofactor of } 6 = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2
4 & -1 \end{vmatrix} = 1 \cdot (-1 - 8) = -9 \)
So, \( [a\ b\ c] = [18\ 0\ -9] \)
Now compute:
\[
18 \cdot 4 + 0 \cdot 11 + (-9) \cdot 8 = 72 + 0 - 72 = 0
\]
% Final Answer
\[
\boxed{0}
\]