\(- \frac {4}{3}\)
The correct option is(A): \(\pm \frac {4}{3}\).
Centers and radii of the given circles \(x^{2}+y^{2}=9\)
and \(x^{2}+y^{2}+2 a x+2 y+1=0\) is \(C_{1}(0,0), r_{1}=3\)
and \(C_{2}(-\alpha, 1)\) and \(r_{2}=\sqrt{\alpha^{2}+1-1}=|\alpha|\)
Since, two circles touch internally,
\(\therefore C_{1} C_{2}=r_{1}-r_{2}\)
\(\Rightarrow \,\,\,,\sqrt{\alpha^{2}+1^{2}}=3-|\alpha|\)
\(\Rightarrow \,\,\,\alpha^{2}+1=9+\alpha^{2}-6|\alpha|\)
\(\Rightarrow \,\,\,\,6|\alpha|=8\)
\(\Rightarrow|\alpha|=\frac{4}{3}\)
\(\Rightarrow \,\,\,\alpha=\pm \frac{4}{3}\)
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to: