The general form of the characteristic polynomial of a \( 3 \times 3 \) matrix is
\[
f(\lambda) = \lambda^3 - (\text{tr}A)\lambda^2 + (\text{sum of principal minors})\lambda - \det(A)
\]
Comparing with \( f(\lambda) = \lambda^3 - 10\lambda^2 + 27\lambda - 18 \), we get:
\[
\text{tr}A = 10, \quad \det(A) = 18
\]