Let the vertices of the triangle be \(A=(4, p, -3)\), \(B=(-1, -1, 2)\), and \(C=(3, 5, -8)\).
The centroid \(G\) of \(\triangle ABC\) is given by:
\(G = \left( \frac{x_A+x_B+x_C}{3}, \frac{y_A+y_B+y_C}{3}, \frac{z_A+z_B+z_C}{3} \right)\)
\(G_x = \frac{4+(-1)+3}{3} = \frac{6}{3} = 2\).
\(G_y = \frac{p+(-1)+5}{3} = \frac{p+4}{3}\).
\(G_z = \frac{-3+2+(-8)}{3} = \frac{-9}{3} = -3\).
So, the centroid is \(G = (2, \frac{p+4}{3}, -3)\).
The centroid is also the midpoint of points \(P_1=(1, 4, -2)\) and \(P_2=(q, 2, -4)\).
Midpoint \(M\) of \(P_1P_2\) is:
\(M = \left( \frac{1+q}{2}, \frac{4+2}{2}, \frac{-2+(-4)}{2} \right) = \left( \frac{1+q}{2}, \frac{6}{2}, \frac{-6}{2} \right) = \left( \frac{1+q}{2}, 3, -3 \right)\).
Since \(G=M\), we equate the coordinates:
x-coordinate: \(2 = \frac{1+q}{2} \Rightarrow 4 = 1+q \Rightarrow q = 3\).
y-coordinate: \(\frac{p+4}{3} = 3 \Rightarrow p+4 = 9 \Rightarrow p = 5\).
z-coordinate: \(-3 = -3\) (Consistent).
So, we found \(p=5\) and \(q=3\).
We need to calculate \(p^2+q^2\).
\(p^2+q^2 = (5)^2 + (3)^2 = 25 + 9 = 34\).
This matches option (d).
\[ \boxed{34} \]