The boiling point elevation constant depends on both the square of the boiling point and the inverse of the enthalpy of vaporization.
The boiling point elevation constant is given by:
\( K_b = \frac{RT_b^2 M}{1000 \Delta H_{\text{vap}}} \)
Where:
For solvents X and Y, taking the ratio of their boiling point elevation constants:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_X}{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_Y} \)
The equation simplifies to:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{(T_b^2)_X}{(T_b^2)_Y} \times \frac{(\Delta H_{\text{vap}})_Y}{(\Delta H_{\text{vap}})_X} \)
Substituting these values:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{2^2}{1^2} \times \frac{2}{1} \)
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{4}{1} \times \frac{2}{1} = \frac{8}{1} \)
The ratio of boiling point elevation constants, \( m \), is 8.
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.