The boiling point elevation constant depends on both the square of the boiling point and the inverse of the enthalpy of vaporization.
The boiling point elevation constant is given by:
\( K_b = \frac{RT_b^2 M}{1000 \Delta H_{\text{vap}}} \)
Where:
For solvents X and Y, taking the ratio of their boiling point elevation constants:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_X}{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_Y} \)
The equation simplifies to:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{(T_b^2)_X}{(T_b^2)_Y} \times \frac{(\Delta H_{\text{vap}})_Y}{(\Delta H_{\text{vap}})_X} \)
Substituting these values:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{2^2}{1^2} \times \frac{2}{1} \)
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{4}{1} \times \frac{2}{1} = \frac{8}{1} \)
The ratio of boiling point elevation constants, \( m \), is 8.