The boiling point elevation constant depends on both the square of the boiling point and the inverse of the enthalpy of vaporization.
The boiling point elevation constant is given by:
\( K_b = \frac{RT_b^2 M}{1000 \Delta H_{\text{vap}}} \)
Where:
For solvents X and Y, taking the ratio of their boiling point elevation constants:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_X}{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_Y} \)
The equation simplifies to:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{(T_b^2)_X}{(T_b^2)_Y} \times \frac{(\Delta H_{\text{vap}})_Y}{(\Delta H_{\text{vap}})_X} \)
Substituting these values:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{2^2}{1^2} \times \frac{2}{1} \)
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{4}{1} \times \frac{2}{1} = \frac{8}{1} \)
The ratio of boiling point elevation constants, \( m \), is 8.
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
Match List I with List II:
Choose the correct answer from the options given below:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: