The boiling point elevation constant depends on both the square of the boiling point and the inverse of the enthalpy of vaporization.
The boiling point elevation constant is given by:
\( K_b = \frac{RT_b^2 M}{1000 \Delta H_{\text{vap}}} \)
Where:
For solvents X and Y, taking the ratio of their boiling point elevation constants:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_X}{\left(\frac{RT_b^2 M}{\Delta H_{\text{vap}}}\right)_Y} \)
The equation simplifies to:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{(T_b^2)_X}{(T_b^2)_Y} \times \frac{(\Delta H_{\text{vap}})_Y}{(\Delta H_{\text{vap}})_X} \)
Substituting these values:
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{2^2}{1^2} \times \frac{2}{1} \)
\( \frac{(K_b)_X}{(K_b)_Y} = \frac{4}{1} \times \frac{2}{1} = \frac{8}{1} \)
The ratio of boiling point elevation constants, \( m \), is 8.
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]