We have:
\(A = \frac{1}{2} \int_{4}^{6} x \cdot (6x - x^2) \, dx.\)
Calculating the integral:
\(A = \frac{1}{2} \int_{4}^{6} (6x - x^2) \, dx = \frac{76}{3}.\)
Multiplying by 12:
\(12A = 12 \times \frac{76}{3} = 304.\)
The Correct answer is: 304
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: