For ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \):
- Foci: \( (\pm ae, 0) \)
- Ends of minor axis: \( (0, \pm b) \)
Given: angle between line segments from foci to ends of minor axis is \( 90^\circ \)
So, vectors from focus \( F = (ae, 0) \) to:
- \( B = (0, b) \) → vector \( \vec{v}_1 = (-ae, b) \)
- \( B' = (0, -b) \) → vector \( \vec{v}_2 = (-ae, -b) \)
Angle between vectors \( \vec{v}_1 \) and \( \vec{v}_2 \) is \( 90^\circ \)
Hence, their dot product:
\[
\vec{v}_1 \cdot \vec{v}_2 = (-ae)^2 + b \cdot (-b) = a^2 e^2 - b^2 = 0
\Rightarrow a^2 e^2 = b^2
\]
But \( b^2 = a^2(1 - e^2) \Rightarrow a^2 e^2 = a^2(1 - e^2) \)
\[
\Rightarrow e^2 = 1 - e^2 \Rightarrow 2e^2 = 1 \Rightarrow e = \boxed{ \frac{1}{\sqrt{2}} }
\]