If the amplitude of electric field vector and frequency of an electromagnetic wave travelling along $z$-direction in vacuum are 180 N C$^{-1}$ and 60 GHz respectively, then the equation of the magnitude of the electric field of the plane electromagnetic wave is
Show Hint
Use the wave equation \( E = E_0 \sin(2\pi(kz - ft)) \) for electromagnetic waves in vacuum. Compute $k$ using \( k = \frac{f}{c} \).
\( E = 180 \sin\left( \pi \left( 1000z - 60 \times 10^9 t \right) \right)~\text{N C}^{-1} \)
\( E = 180 \sin\left( 2\pi \left( 200z - 6 \times 10^{10} t \right) \right)~\text{N C}^{-1} \)
\( E = 180 \sin\left( 2\pi \left( 100z - 3 \times 10^{10} t \right) \right)~\text{N C}^{-1} \)
\( E = 180 \sin\left( 2\pi \left( 10z - 3 \times 10^5 t \right) \right)~\text{N C}^{-1} \)
Hide Solution
Verified By Collegedunia
The Correct Option isB
Solution and Explanation
The general form of the electric field of an EM wave traveling in the $z$-direction is:
\[
E = E_0 \sin(2\pi (kz - ft))
\]
Given:
\[
E_0 = 180~\text{N C}^{-1},\quad f = 60~\text{GHz} = 6 \times 10^{10}~\text{Hz}
\]
The wave number $k = \frac{f}{c} = \frac{6 \times 10^{10}}{3 \times 10^8} = 200~\text{m}^{-1}$
Thus,
\[
E = 180 \sin\left( 2\pi (200z - 6 \times 10^{10} t) \right)~\text{N C}^{-1}
\]