The electric field of an electromagnetic wave travelling through a medium is given by
\[
\vec{E}(x,t)=25\sin(2\times10^{15}t-10^{7}x)\,\hat{n}.
\]
Then the refractive index of the medium is ________.
(All given measurements are in SI units)
Show Hint
Always compare the given wave equation with \( \sin(\omega t-kx) \) to directly read \( \omega \) and \( k \).
Concept:
For a plane electromagnetic wave of the form
\[
E=E_0\sin(\omega t-kx),
\]
the wave speed is given by
\[
v=\frac{\omega}{k}.
\]
The refractive index \( n \) of the medium is:
\[
n=\frac{c}{v}
\]
where \( c=3\times10^8 \, \text{m s}^{-1} \).
Step 1: Identify angular frequency and wave number
From the given equation:
\[
\omega = 2\times10^{15}\ \text{rad s}^{-1},\quad
k = 10^{7}\ \text{m}^{-1}
\]
Step 2: Calculate the wave speed in the medium
\[
v=\frac{\omega}{k}
=\frac{2\times10^{15}}{10^{7}}
=2\times10^{8}\ \text{m s}^{-1}
\]
Step 3: Find the refractive index
\[
n=\frac{c}{v}
=\frac{3\times10^{8}}{2\times10^{8}}
=1.5
\]