Step 1: Identify centers and radii
For circle $S$: $x^2 + y^2 + 2kx + 4y - 3 = 0$
Center $C_1 = (-k, -2)$, radius $r_1 = \sqrt{k^2 + 4 + 3} = \sqrt{k^2 + 7}$
For circle $S^1$: $x^2 + y^2 - 4x + 2ky + 9 = 0$
Center $C_2 = (2, -k)$, radius $r_2 = \sqrt{4 + k^2 - 9} = \sqrt{k^2 - 5}$
Step 2: Use condition on acute angle $\theta$ between circles
\[
\cos \theta = \frac{|C_1C_2|^2 - r_1^2 - r_2^2}{-2 r_1 r_2} = \frac{3}{8}.
\]
Calculate $|C_1C_2|^2$:
\[
|C_1C_2|^2 = (2 + k)^2 + (-k + 2)^2 = (k+2)^2 + (2 - k)^2 = 2k^2 + 8.
\]
Calculate $r_1^2 + r_2^2$:
\[
r_1^2 + r_2^2 = (k^2 + 7) + (k^2 - 5) = 2k^2 + 2.
\]
Calculate numerator of cosine formula:
\[
|C_1C_2|^2 - r_1^2 - r_2^2 = 6.
\]
Calculate denominator:
\[
-2 r_1 r_2 = -2 \sqrt{k^2 + 7} \sqrt{k^2 - 5}.
\]
So:
\[
\cos \theta = \frac{6}{-2 \sqrt{k^2 + 7} \sqrt{k^2 - 5}} = \frac{3}{8}.
\]
Multiply both sides by denominator:
\[
6 = -\frac{3}{8} \times 2 \sqrt{k^2 + 7} \sqrt{k^2 - 5} = -\frac{3}{4} \sqrt{k^2 + 7} \sqrt{k^2 - 5}.
\]
Since the square roots are positive, take absolute value:
\[
\sqrt{k^2 + 7} \sqrt{k^2 - 5} = 8.
\]
Square both sides:
\[
(k^2 + 7)(k^2 - 5) = 64,
\]
\[
k^4 + 2k^2 - 35 = 64,
\]
\[
k^4 + 2k^2 - 99 = 0.
\]
Let $x = k^2$:
\[
x^2 + 2x - 99 = 0.
\]
Solve quadratic:
\[
x = \frac{-2 \pm \sqrt{400}}{2} = \frac{-2 \pm 20}{2}.
\]
Two roots:
\[
x_1 = 9, \quad x_2 = -11 \quad (\text{discard negative}).
\]
So $k^2 = 9$, $k = \pm 3$.
Step 3: Check center of $S^1$ in first quadrant
Center of $S^1$ is $(2, -k)$. For first quadrant, $y>0$ implies $-k>0 \Rightarrow k<0$. So $k = -3$.
Step 4: Find radical axis
Radical axis is $S - S^1 = 0$:
\[
(x^2 + y^2 + 2kx + 4y - 3) - (x^2 + y^2 - 4x + 2ky + 9) = 0,
\]
\[
2kx + 4y - 3 + 4x - 2ky - 9 = 0,
\]
\[
2kx + 4x + 4y - 2ky - 12 = 0.
\]
Substitute $k = -3$:
\[
2(-3) x + 4x + 4y - 2(-3) y - 12 = 0,
\]
\[
-6x + 4x + 4y + 6y - 12 = 0,
\]
\[
-2x + 10 y - 12 = 0,
\]
\[
2x - 10 y + 12 = 0,
\]
Divide by 2:
\[
x - 5 y + 6 = 0.
\]