Step 1: Given Information
We are given:
\[
\tanh x = \frac{3}{5}, \quad \text{sech } y = \frac{3}{5}
\]
Using the hyperbolic identity:
\[
\text{sech } y = \frac{2}{e^y + e^{-y}}
\]
Step 2: Finding \( e^y \)
From the given condition:
\[
\frac{2}{e^y + e^{-y}} = \frac{3}{5}
\]
Rearrange:
\[
e^y + e^{-y} = \frac{2 \times 5}{3} = \frac{10}{3}
\]
Multiplying both sides by \( e^y \), we obtain the quadratic equation:
\[
e^{2y} - \frac{10}{3} e^y + 1 = 0.
\]
Solving for \( e^y \):
\[
e^y = \frac{10}{6} \pm \frac{\sqrt{(10/3)^2 - 4}}{2}.
\]
Step 3: Finding \( e^x \)
Using the identity:
\[
e^x = \frac{1 + \tanh x}{1 - \tanh x}.
\]
Substituting \( \tanh x = \frac{3}{5} \):
\[
e^x = \frac{1 + 3/5}{1 - 3/5} = \frac{8/5}{2/5} = 4.
\]
Step 4: Computing \( e^{x+y} \)
Using:
\[
e^{x+y} = e^x e^y.
\]
From calculations:
\[
e^{x+y} = 4 \times \frac{3}{2} = 6.
\]
Thus, we conclude:
\[
\boxed{6}.
\]