>
Exams
>
Mathematics
>
Inverse Trigonometric Functions
>
if tanh 1 x coth 1 y log sqrt 5 then find tan 1 xy
Question:
If $ \tanh^{-1} x = \coth^{-1} y = \log \sqrt{5} $, then find $ \tan^{-1}(xy) = ? $
Show Hint
Use exponential definitions for \( \tanh^{-1} x \) and \( \coth^{-1} x \), and simplify using hyperbolic identities.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 4, 2025
\( \frac{\pi}{4} \)
\( \frac{\pi}{3} \)
\( \frac{\pi}{6} \)
\( \frac{3\pi}{4} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Given: \[ \tanh^{-1} x = \log \sqrt{5} \Rightarrow x = \tanh(\log \sqrt{5}) \Rightarrow x = \frac{e^{\log \sqrt{5}} - e^{-\log \sqrt{5}}}{e^{\log \sqrt{5}} + e^{-\log \sqrt{5}}} = \frac{\sqrt{5} - \frac{1}{\sqrt{5}}}{\sqrt{5} + \frac{1}{\sqrt{5}}} = \frac{5 - 1}{5 + 1} = \frac{2}{3} \] Similarly, \[ \coth^{-1} y = \log \sqrt{5} \Rightarrow y = \coth(\log \sqrt{5}) = \frac{\sqrt{5} + \frac{1}{\sqrt{5}}}{\sqrt{5} - \frac{1}{\sqrt{5}}} = \frac{5 + 1}{5 - 1} = \frac{6}{4} = \frac{3}{2} \] So: \[ xy = \frac{2}{3} \cdot \frac{3}{2} = 1 \Rightarrow \tan^{-1}(xy) = \tan^{-1}(1) = \frac{\pi}{4} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Inverse Trigonometric Functions
Let the maximum value of \( (\sin^{-1}x)^2 + (\cos^{-1}x)^2 \) for \( x \in \left[ -\frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}} \right] \) be \( \frac{m}{n}\pi^2 \), where \( \gcd(m, n) = 1 \). Then \( m + n \) is equal to _________.
JEE Main - 2026
Mathematics
Inverse Trigonometric Functions
View Solution
If the domain of the function \(f(x) = \cos^{-1}\left(\frac{2x-5}{11-3x}\right) + \sin^{-1}(2x^2-3x+1)\) is the interval \([\alpha, \beta]\), then \(\alpha + 2\beta\) is equal to:}
JEE Main - 2026
Mathematics
Inverse Trigonometric Functions
View Solution
If the domain of the function $f(x)=\sin^{-1}\!\left(\dfrac{1}{x^2-2x-2}\right)$ is $(-\infty,\alpha)\cup[\beta,\gamma]\cup[\delta,\infty)$, then $\alpha+\beta+\gamma+\delta$ is equal to
JEE Main - 2026
Mathematics
Inverse Trigonometric Functions
View Solution
The number of solutions of \[ \tan^{-1}(4x) + \tan^{-1}(6x) = \frac{\pi}{6}, \] where \[ -\frac{1}{2\sqrt{6}}<x<\frac{1}{2\sqrt{6}}, \] is equal to
JEE Main - 2026
Mathematics
Inverse Trigonometric Functions
View Solution
If domain of $f(x)=\sin^{-1}\!\left(\dfrac{1}{x^2-2x-2}\right)$ is $(-\infty,\alpha]\cup[\beta,\gamma]\cup[\delta,\infty)$, then $(\alpha+\beta+\gamma+\delta)$ is
JEE Main - 2026
Mathematics
Inverse Trigonometric Functions
View Solution
View More Questions
Questions Asked in AP EAPCET exam
In a series LCR circuit, the voltages across the capacitor, resistor, and inductor are in the ratio 2:3:6. If the voltage of the source in the circuit is 240 V, then the voltage across the inductor is
AP EAPCET - 2025
Electromagnetic induction
View Solution
0.25 moles of $ \text{CH}_2\text{FCOOH} $ was dissolved in $ 0.5 \, \text{kg} $ of water. The depression in freezing point of the resultant solution was observed as $ 1^\circ \text{C} $. What is the van't Hoff factor? ($ K_f = 1.86 \, \text{K kg mol}^{-1} $)
AP EAPCET - 2025
Colligative Properties
View Solution
At $T(K)$, the vapor pressure of water is $x$ kPa. What is the vapor pressure (in kPa) of 1 molal solution containing non-volatile solute?
AP EAPCET - 2025
Colligative Properties
View Solution
At 300 K, vapour pressure of pure liquid A is 70 mm Hg. It forms an ideal solution with liquid B. Mole fraction of B = 0.2 and total vapour pressure of solution = 84 mm Hg. What is vapour pressure (in mm) of pure B?
AP EAPCET - 2025
Colligative Properties
View Solution
A 1% (w/v) aqueous solution of a certain solute is isotonic with a 3% (w/v) solution of glucose (molar mass 180 g mol$^{-1}$). The molar mass of solute (in g mol$^{-1}$) is
AP EAPCET - 2025
Colligative Properties
View Solution
View More Questions