Step 1: Use the identity for \( \csc \theta \).
We are given that \( \tan \theta = \frac{8}{15} \). Using the identity:
\[
\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{8}{15}
\]
Step 2: Find the hypotenuse using Pythagoras theorem.
The sides of the right triangle are 8 (opposite) and 15 (adjacent). To find the hypotenuse, \( h \), we use the Pythagoras theorem:
\[
h = \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17
\]
Step 3: Calculate \( \csc \theta \).
Now, we use the identity \( \csc \theta = \frac{h}{\text{Opposite}} \):
\[
\csc \theta = \frac{17}{8}
\]
Step 4: Conclusion.
Thus, the value of \( \csc \theta \) is \( \frac{17}{8} \). Therefore, the correct answer is (A).