Given \( \tan \theta = \frac{4}{3} \) in the first quadrant, where all trigonometric functions are positive. Let the opposite side be 4 and the adjacent side be 3 in a right triangle. The hypotenuse is:
\[
\sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5
\]
\[
\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5}
\]
Verify:
\[
\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{3}{5}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}
\]
Thus, the value of \( \sin \theta \) is:
\[
\boxed{\frac{4}{5}}
\]