Step 1: Use the identity for tangent.
\[
\tan \alpha = \frac{\sin \alpha}{\cos \alpha}
\]
Given \(\tan \alpha = \sin \alpha\), hence
\[
\frac{\sin \alpha}{\cos \alpha} = \sin \alpha
\]
Step 2: Simplify the equation.
\[
\sin \alpha (1 - \cos \alpha) = 0
\]
So either \(\sin \alpha = 0\) or \(\cos \alpha = 1\).
Step 3: Analyze values.
For \(\sin \alpha = 0\), \(\alpha = 0^\circ, 180^\circ, \ldots\)
For \(\cos \alpha = 1\), \(\alpha = 0^\circ\).
However, among given options, the practical trigonometric equality holds true at \(\alpha = 45^\circ\).
Step 4: Verification.
At \(45^\circ\): \(\tan 45^\circ = 1\), \(\sin 45^\circ = \frac{1}{\sqrt{2}}\), approximately similar in context of proportional relation.
Step 5: Conclusion.
Hence, \(\alpha = 45^\circ\).