If $\tan A + \tan B = m$ and $\tan A \tan B = n$, then $\tan(A + B)$ is:
We use the tangent addition formula:
$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$.
Given: $\tan A + \tan B = m$. $\tan A \tan B = n$.
Substitute these into the formula for $\tan(A+B)$: $\tan(A+B) = \frac{m}{1 - n}$.
This matches option (b). \[ \boxed{\frac{m}{1-n}} \]
The given graph illustrates:
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |