We are given that \( \tan A = \tan \alpha \coth x = \cot \beta \tanh x \).
Step 1: Use the identity for the addition of tangents:
\[
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
\]
Step 2: Substitute the expressions for \( \tan \alpha \) and \( \tan \beta \) using the given relations, and simplify using hyperbolic and trigonometric identities.
Step 3: The final result simplifies to \( \sinh 2x \csc 2A \).
Thus, the correct answer is \( \sinh 2x \csc 2A \).