Given tan A + cot A = 2. Since \(\cot A = \frac{1}{\tan A}\), we can rewrite the given equation as: \(\tan A + \frac{1}{\tan A} = 2\)
Let \(x = \tan A\).
Then \(x + \frac{1}{x} = 2\).
Multiplying by \(x\) gives \(x^2 + 1 = 2x\), or \(x^2 - 2x + 1 = 0\).
This factors as \((x-1)^2 = 0\), so \(x=1\). Thus, \(\tan A = 1\), which implies \(\cot A = \frac{1}{\tan A} = 1\).
Now, tan⁴ A + cot⁴ A = 1⁴ + 1⁴ = 1 + 1 = 2.
Answer: (A) 2
We are given:
$$ \tan A + \cot A = \tan A + \frac{1}{\tan A} = 2. $$
Let $ x = \tan A $. Then:
$$ x + \frac{1}{x} = 2 \implies x^2 - 2x + 1 = 0 \implies (x - 1)^2 = 0 \implies x = 1. $$
Thus, $ \tan A = 1 $ and $ \cot A = \frac{1}{\tan A} = 1 $.
Now calculate $ \tan^4 A + \cot^4 A $:
$$ \tan^4 A + \cot^4 A = 1^4 + 1^4 = 1 + 1 = 2. $$
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2