Given:
\[
x = \frac{3at}{1 + t^3}, \quad y = \frac{3at^2}{1 + t^3}
\]
Let’s clear denominators and consider:
\[
x = \frac{3at}{1 + t^3}, \quad y = \frac{3at^2}{1 + t^3}
\Rightarrow x^3 + y^3 = \frac{27a^3(t^3 + t^6)}{(1 + t^3)^3}
\]
Now:
\[
3axy = 3a \cdot \frac{3at}{1 + t^3} \cdot \frac{3at^2}{1 + t^3}
= \frac{27a^3t^3}{(1 + t^3)^2}
\]
Hence:
\[
x^3 + y^3 = 3axy
\]