Step 1: Square both sides.
\[
\sqrt{x} + \sqrt{y} = \sqrt{xy}
\Rightarrow x + y + 2\sqrt{xy} = xy
\]
Step 2: Differentiate implicitly w.r.t. \(x\).
\[
1 + \frac{dy}{dx} + \frac{2}{2\sqrt{xy}}(y + x\frac{dy}{dx}) = y + x\frac{dy}{dx}
\]
Step 3: Simplify and solve for \(\dfrac{dy}{dx}\).
After simplification, we get
\[
\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{3}{2}}
\]