Step 1: Rewrite the inequality.
Given:
$$
\sqrt{3}\cos\theta + \sin\theta>0.
$$
Factor out 2:
$$
\sqrt{3}\cos\theta + \sin\theta = 2\left(\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta\right).
$$
Recognize:
$$
\frac{\sqrt{3}}{2} = \cos\frac{\pi}{6}, \quad \frac{1}{2} = \sin\frac{\pi}{6}.
$$
Use angle addition identity:
$$
\cos\frac{\pi}{6}\cos\theta + \sin\frac{\pi}{6}\sin\theta = \cos\left(\theta - \frac{\pi}{6}\right).
$$
So:
$$
\sqrt{3}\cos\theta + \sin\theta = 2\cos\left(\theta - \frac{\pi}{6}\right).
$$
Inequality becomes:
$$
\cos\left(\theta - \frac{\pi}{6}\right)>0.
$$
Step 2: Solve the cosine inequality.
Cosine is positive in:
$$
-\frac{\pi}{2} + 2k\pi<\theta - \frac{\pi}{6}<\frac{\pi}{2} + 2k\pi.
$$
Solve for $ \theta $:
$$
-\frac{\pi}{2} + \frac{\pi}{6} + 2k\pi<\theta<\frac{\pi}{2} + \frac{\pi}{6} + 2k\pi.
$$
Simplify:
$$
-\frac{\pi}{3} + 2k\pi<\theta<\frac{2\pi}{3} + 2k\pi.
$$
For principal values $ -\pi<\theta<\pi $, take $ k = 0 $:
$$
-\frac{\pi}{3}<\theta<\frac{2\pi}{3}.
$$
Step 3: Final Answer.
$$
\boxed{-\frac{\pi}{3}<\theta<\frac{2\pi}{3}}
$$