Differentiate the given equation implicitly with respect to \( x \):
\[
\frac{d}{dx} \left( \sqrt{1 - x^2} + \sqrt{1 - y^2} \right) = \frac{d}{dx} \left( a(x - y) \right).
\]
Applying the chain rule:
\[
\frac{-x}{\sqrt{1 - x^2}} + \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = a(1 - \frac{dy}{dx}).
\]
Rearrange terms:
\[
\frac{-x}{\sqrt{1 - x^2}} - a = \frac{dy}{dx} \left( a - \frac{y}{\sqrt{1 - y^2}} \right).
\]
Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\frac{-x}{\sqrt{1 - x^2}} - a}{a - \frac{y}{\sqrt{1 - y^2}}}.
\]
For \( a = 0 \), simplify further to:
\[
\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}.
\]
Conclusion: The result is proved.