Question:

If \( \sin \theta = \frac{a}{b} \), then the value of \( \cos \theta \) is:

Show Hint

Use the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] to find one trigonometric function from another.
Updated On: Oct 27, 2025
  • \( \frac{b}{\sqrt{b^2 - a^2}} \)
  • \( \frac{\sqrt{b^2 - a^2}}{b} \)
  • \( \frac{a}{\sqrt{b^2 - a^2}} \)
  • \( \frac{b}{a} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using the Pythagorean identity:
\[ \sin^2 \theta + \cos^2 \theta = 1. \] \[ \left(\frac{a}{b}\right)^2 + \cos^2 \theta = 1. \] \[ \cos^2 \theta = 1 - \frac{a^2}{b^2}. \] \[ \cos \theta = \frac{\sqrt{b^2 - a^2}}{b}. \]
Was this answer helpful?
0
0

Questions Asked in Bihar Class X Board exam

View More Questions