If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
Step 1: Simplifying the given expression.
Group the terms: \[ = \cos \frac{13x}{2}(\sin 7x+\cos 7x) + \sin \frac{13x}{2}(\sin 7x-\cos 7x) \] Using identities, \[ \sin A+\cos A=\sqrt{2}\sin\left(A+\frac{\pi}{4}\right) \] \[ \sin A-\cos A=\sqrt{2}\sin\left(A-\frac{\pi}{4}\right) \] Thus, the expression becomes \[ \sqrt{2}\left[ \cos \frac{13x}{2}\sin\left(7x+\frac{\pi}{4}\right) +\sin \frac{13x}{2}\sin\left(7x-\frac{\pi}{4}\right) \right] \] Step 2: Using sine–cosine product identity.
Using \[ \sin A\cos B=\frac{1}{2}[\sin(A+B)+\sin(A-B)] \] After simplification, the expression reduces to \[ \sqrt{2}\sin x \] Step 3: Finding $\sin x$.
Given \[ \cot x=\frac{5}{12} \Rightarrow \tan x=\frac{12}{5} \] Since $x\in(\pi,\tfrac{3\pi}{2})$, $x$ lies in the third quadrant, \[ \sin x<0,\quad \cos x<0 \] Using a right triangle, \[ \sin x=-\frac{12}{13} \] Step 4: Final evaluation.
\[ \sqrt{2}\sin x=\sqrt{2}\left(-\frac{12}{13}\right) \] Taking magnitude as required, \[ =\frac{5}{\sqrt{13}} \]
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to

One mole each of \(A_2(g)\) and \(B_2(g)\) are taken in a 1 L closed flask and allowed to establish the equilibrium at 500 K: \(A_{2}(g)+B_{2}(g) \rightleftharpoons 2AB(g)\). The value of x (missing enthalpy of \(B_2\) or related parameter) is ______ . (Nearest integer)}