We know:
\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]
Given \( \sin \theta = -\frac{3}{4} \), we find \( \cos \theta \) using:
\[
\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{9}{16}\right) = \frac{7}{16}
\Rightarrow \cos \theta = \pm \frac{\sqrt{7}}{4}
\]
The sign of \( \cos \theta \) depends on the quadrant. Since \( \sin \theta<0 \), suppose \( \theta \) lies in 3rd or 4th quadrant.
Assume \( \cos \theta>0 \), so:
\[
\cos \theta = \frac{\sqrt{7}}{4}
\]
Then:
\[
\sin 2\theta = 2 \cdot \left(-\frac{3}{4}\right) \cdot \frac{\sqrt{7}}{4} = -\frac{6\sqrt{7}}{16} = \boxed{ -\frac{3\sqrt{7}}{8} }
\]