We know that \(\sin \theta = \frac{1}{\sqrt{2}}\). Therefore, \(\sin^2 \theta = \frac{1}{2}\).
Substitute this into the given expression:
\[
3 \cdot \sin^2 \theta - 4 \cdot \sin^3 \theta \cdot \cos \theta = 3 \cdot \frac{1}{2} - 4 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{2} - 1 = \frac{1}{2}
\]
Thus, the correct answer is \(\frac{1}{2}\).