Question:

If \(\sin\theta=\dfrac{\sqrt{3}}{2}\), then the value of \(\csc\theta+\cot\theta\) is

Show Hint

When \(\sin\theta\) or \(\cos\theta\) is standard, compute others using \(\sin^{2}\theta+\cos^{2}\theta=1\).
Updated On: Oct 27, 2025
  • \(2+\sqrt{3}\)
  • \(2\sqrt{3}\)
  • \(\sqrt{2}\)
  • \(\sqrt{3}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Compute co-functions.
\(\csc\theta=\dfrac{1}{\sin\theta}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\).
\(\cos\theta=\sqrt{1-\sin^{2}\theta}=\dfrac{1}{2}\Rightarrow \cot\theta=\dfrac{\cos\theta}{\sin\theta}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\).
Step 2: Add.
\(\csc\theta+\cot\theta=\dfrac{2\sqrt{3}}{3}+\dfrac{\sqrt{3}}{3}=\sqrt{3}\).
Was this answer helpful?
0
0

Questions Asked in Bihar Class X Board exam

View More Questions