Given: \[ \sin \theta + \cos \theta = 1 \] Step 1: Square both sides \[ (\sin \theta + \cos \theta)^2 = 1^2 \] Expanding the left side using the identity \((a+b)^2 = a^2 + 2ab + b^2\), we get: \[ \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = 1 \] Step 2: Use the Pythagorean identity Recall that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substitute this into the equation: \[ 1 + 2 \sin \theta \cos \theta = 1 \] Step 3: Simplify Subtract 1 from both sides: \[ 2 \sin \theta \cos \theta = 0 \] Divide both sides by 2: \[ \sin \theta \cos \theta = 0 \] Step 4: Verify possible values - If \(\sin \theta = 0\), then \(\cos \theta = 1\), and \(\sin \theta \cos \theta = 0 \times 1 = 0\). - If \(\cos \theta = 0\), then \(\sin \theta = 1\), and \(\sin \theta \cos \theta = 1 \times 0 = 0\). Both cases satisfy the equation.
Final answer: \[ \boxed{0} \]
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.