Step 1: Given condition.
$\sin \theta - \cos \theta = 0 \Rightarrow \sin \theta = \cos \theta$
Step 2: Apply Pythagoras identity.
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Since $\sin \theta = \cos \theta$, we can write:
\[
2 \sin^2 \theta = 1 \Rightarrow \sin^2 \theta = \dfrac{1}{2}
\]
Step 3: Substitute in the expression.
\[
\sin^4 \theta + \cos^4 \theta = 2(\sin^4 \theta)
\]
\[
= 2 \left( \dfrac{1}{2} \right)^2 = 2 \times \dfrac{1}{4} = \dfrac{1}{2}
\]
Step 4: Conclusion.
Hence, $\sin^4 \theta + \cos^4 \theta = \dfrac{1}{2}$.