Given:
\[
\sin \theta + 2 \cos \theta = 1
\]
Let’s solve by expressing this as a linear combination.
Step 1: Assume
\[
\sin \theta = a,
\cos \theta = b
\]
Then:
\[
a + 2b = 1
\text{(1)}
\]
\[
a^2 + b^2 = 1
\text{(2)}
\text{(Pythagorean identity)}
\]
Step 2: From (1), express \( a = 1 - 2b \), and substitute into (2):
\[
(1 - 2b)^2 + b^2 = 1
\Rightarrow 1 - 4b + 4b^2 + b^2 = 1
\Rightarrow 5b^2 - 4b = 0
\Rightarrow b(5b - 4) = 0
\Rightarrow b = 0 \text{ or } b = \frac{4}{5}
\]
Step 3: Since \( \theta \) lies in the 4th quadrant:
- \( \cos \theta>0 \)
- \( \sin \theta<0 \)
So, choose \( \cos \theta = \frac{4}{5} \)
Then from (1):
\[
\sin \theta = 1 - 2 . \frac{4}{5} = 1 - \frac{8}{5} = -\frac{3}{5}
\]
Step 4: Evaluate the expression:
\[
7 \cos \theta + 6 \sin \theta = 7 . \frac{4}{5} + 6 . \left(-\frac{3}{5}\right)
= \frac{28}{5} - \frac{18}{5} = \frac{10}{5} = \boxed{2}
\]