0
$\frac{-1}{2}$
Given equations:
\(\sin \alpha + \sin \beta = \frac{\sqrt{6}}{2}\)
\(\cos \alpha + \cos \beta = \frac{\sqrt{2}}{2}\)
Using sum-to-product identities:
\(\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)\)
\(\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)\)
Substituting given values:
\(2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\sqrt{6}}{2}\)
\(2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\sqrt{2}}{2}\)
Dividing both equations:
\(\frac{\sin \left(\frac{\alpha + \beta}{2} \right)}{\cos \left(\frac{\alpha + \beta}{2} \right)} = \frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}\)
So, \(\tan \left(\frac{\alpha + \beta}{2} \right) = \sqrt{3}\), which gives:
\(\frac{\alpha + \beta}{2} = \frac{\pi}{3}\), thus \(\alpha + \beta = \frac{2\pi}{3}\).
Solving for \(\cos(\alpha - \beta)\):
\(\cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\frac{\sqrt{2}}{2}}{2 \cos \left(\frac{\alpha + \beta}{2} \right)}\)
\(= \frac{\frac{\sqrt{2}}{2}}{2 \times \frac{1}{2}} = \frac{\frac{\sqrt{2}}{2}}{1} = \frac{\sqrt{2}}{2}\)
Squaring both sides and using \(\cos^2 x = \frac{1 + \cos 2x}{2}\):
\(\frac{1 + \cos(\alpha - \beta)}{2} = \frac{2}{4} = \frac{1}{2}\)
\(\cos(\alpha - \beta) = \frac{-1}{2}\)
Thus, the correct answer is:
\(\frac{-1}{2}\)