0
$\frac{-1}{2}$
Given equations:
\(\sin \alpha + \sin \beta = \frac{\sqrt{6}}{2}\)
\(\cos \alpha + \cos \beta = \frac{\sqrt{2}}{2}\)
Using sum-to-product identities:
\(\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)\)
\(\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)\)
Substituting given values:
\(2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\sqrt{6}}{2}\)
\(2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\sqrt{2}}{2}\)
Dividing both equations:
\(\frac{\sin \left(\frac{\alpha + \beta}{2} \right)}{\cos \left(\frac{\alpha + \beta}{2} \right)} = \frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}\)
So, \(\tan \left(\frac{\alpha + \beta}{2} \right) = \sqrt{3}\), which gives:
\(\frac{\alpha + \beta}{2} = \frac{\pi}{3}\), thus \(\alpha + \beta = \frac{2\pi}{3}\).
Solving for \(\cos(\alpha - \beta)\):
\(\cos \left(\frac{\alpha - \beta}{2} \right) = \frac{\frac{\sqrt{2}}{2}}{2 \cos \left(\frac{\alpha + \beta}{2} \right)}\)
\(= \frac{\frac{\sqrt{2}}{2}}{2 \times \frac{1}{2}} = \frac{\frac{\sqrt{2}}{2}}{1} = \frac{\sqrt{2}}{2}\)
Squaring both sides and using \(\cos^2 x = \frac{1 + \cos 2x}{2}\):
\(\frac{1 + \cos(\alpha - \beta)}{2} = \frac{2}{4} = \frac{1}{2}\)
\(\cos(\alpha - \beta) = \frac{-1}{2}\)
Thus, the correct answer is:
\(\frac{-1}{2}\)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.