Step 1: Express \( \sec x \) and \( \tan x \).
We are given \( \sec x + \tan x = 3 \). Using the identity \( \sec^2 x - \tan^2 x = 1 \), we square both sides:
\[
(\sec x + \tan x)^2 = 9.
\]
Expanding the left-hand side:
\[
\sec^2 x + 2 \sec x \tan x + \tan^2 x = 9.
\]
Using the identity \( \sec^2 x = 1 + \tan^2 x \), we substitute and simplify to find \( \sec x \).
Step 2: Solve for \( \sin x \).
After finding \( \sec x \), we use \( \sin^2 x = 1 - \cos^2 x \) to compute \( \sin x \), yielding \( \sin x = \frac{4}{5} \). Thus, the correct answer is option (B).