Solution:
We are given that
\( S = \left\{ x \in \mathbb{R}: \sin^{-1}\left( \frac{x+1}{\sqrt{x^2 + 2x + 2}} \right) - \sin^{-1}\left( \frac{x}{\sqrt{x^2 + 1}} \right) = -\frac{\pi}{4} \right\} \).
Correct Approach:
Recognize Tangent Form:
Notice that \(\frac{x}{\sqrt{x^2 + 1}}\) and \(\frac{x+1}{\sqrt{(x+1)^2 + 1}}\) resemble the form \(\frac{u}{\sqrt{u^2 + 1}}\). Let \(u = \tan \theta\). Then \(\frac{u}{\sqrt{u^2 + 1}} = \sin \theta\). Therefore, \(\sin^{-1}\left( \frac{u}{\sqrt{u^2 + 1}} \right) = \theta = \tan^{-1} u\).
Apply Tangent Inverse:
Let \(\tan^{-1} x = A\) and \(\tan^{-1} (x+1) = B\). Then, \(\sin^{-1}\left( \frac{x}{\sqrt{x^2 + 1}} \right) = A\) and \(\sin^{-1}\left( \frac{x+1}{\sqrt{x^2 + 2x + 2}} \right) = B\). The given equation becomes: \(B - A = -\frac{\pi}{4}\).
Use Tangent Difference Formula:
We have \(B - A = \tan^{-1}(x+1) - \tan^{-1}(x) = -\frac{\pi}{4}\). Apply the tangent difference formula: \(\tan(B - A) = \frac{\tan B - \tan A}{1 + \tan A \tan B}\). Since \(\tan B = x+1\) and \(\tan A = x\), we get: \(\tan\left( -\frac{\pi}{4} \right) = \frac{(x+1) - x}{1 + x(x+1)}\). \(-1 = \frac{1}{1 + x^2 + x}\).
Solve for x:
\( -1 - x^2 - x = 1 \). \( x^2 + x + 2 = 0 \). The discriminant of this quadratic equation is \( D = b^2 - 4ac = 1^2 - 4(1)(2) = -7 \). Since \( D < 0 \), there are no real solutions for \( x \).
Conclusion:
Therefore, the set \(S\) is empty.
Final Answer:
The set \( S \) is an empty set. \( S = \emptyset \).