The Paschen series corresponds to transitions to \(n = 3\). The longest wavelength corresponds to the transition between \(n = 4\) and \(n = 3\). The inverse wavelength is given by:
\(\frac{1}{\lambda} = R Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)\)
For \(n_1 = 3\) and \(n_2 = 4\), and taking \(Z = 1\):
\(\frac{1}{\lambda} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{9} - \frac{1}{16} \right)\)
\(\frac{1}{\lambda} = R \left( \frac{16 - 9}{144} \right) = \frac{7R}{144}\)
Thus:
\(\alpha = 144\)
The Correct answer is: 144
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
Match List-I with List-II.
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)