The Paschen series corresponds to transitions to \(n = 3\). The longest wavelength corresponds to the transition between \(n = 4\) and \(n = 3\). The inverse wavelength is given by:
\(\frac{1}{\lambda} = R Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)\)
For \(n_1 = 3\) and \(n_2 = 4\), and taking \(Z = 1\):
\(\frac{1}{\lambda} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{9} - \frac{1}{16} \right)\)
\(\frac{1}{\lambda} = R \left( \frac{16 - 9}{144} \right) = \frac{7R}{144}\)
Thus:
\(\alpha = 144\)
The Correct answer is: 144
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: