Step 1: Use the compound interest formula:
\[ A = P \left(1 + \frac{r}{100} \right)^t \]
where \( A = 683.20 \), \( P = 600 \), \( t = 2 \), and \( r \) is the rate of interest.
Step 2: Substituting the values into the formula:
\[ 683.20 = 600 \left(1 + \frac{r}{100} \right)^2 \]
Step 3: Simplifying the equation:
\[ \frac{683.20}{600} = \left(1 + \frac{r}{100} \right)^2 \]
\[ 1.13867 = \left(1 + \frac{r}{100} \right)^2 \]
Step 4: Taking the square root of both sides:
\[ 1 + \frac{r}{100} = \sqrt{1.13867} \]
\[ 1 + \frac{r}{100} = 1.0667 \]
Step 5: Solving for \( r \):
\[ \frac{r}{100} = 0.0667 \Rightarrow r = 6.67 \text{ or approximately } 8 \]