10
12
The given problem involves compound interest, where the formula is:
\[ A = P \left(1 + \frac{R}{100}\right)^t \]
where:
Given that an investment of ₹4000 becomes ₹16000 in 8 years:
\[ 16000 = 4000 \left(1 + \frac{R}{100}\right)^8 \]
\[ \frac{16000}{4000} = \left(1 + \frac{R}{100}\right)^8 \]
\[ 4 = \left(1 + \frac{R}{100}\right)^8 \]
Taking the 8th root on both sides:
\[ 1 + \frac{R}{100} = \sqrt[8]{4} \]
Now, using the same rate \( R \), we solve for time \( t \) when ₹2000 grows to ₹16000:
\[ 16000 = 2000 \left(1 + \frac{R}{100}\right)^t \]
\[ \frac{16000}{2000} = \left(1 + \frac{R}{100}\right)^t \]
\[ 8 = \left(1 + \frac{R}{100}\right)^t \]
From Step 1, we know:
\[ 4 = \left(1 + \frac{R}{100}\right)^8 \]
Squaring both sides:
\[ 8 = \left(1 + \frac{R}{100}\right)^{12} \]
Thus, \( t = 12 \) years.
Option (C) 12 years