The time period \(T\) of a simple pendulum is related to the acceleration due to gravity \(g\) by the formula:
\[ T = 2\pi \sqrt{\frac{L}{g}} \]
where \(L\) is the length of the pendulum and \(g\) is the acceleration due to gravity.
At a height \(h = 2R\) from the surface of the Earth, the acceleration due to gravity \(g'\) is given by:
\[ g' = g \left( \frac{R}{R + h} \right)^2 \]
Substituting \(h = 2R\):
\[ g' = g \left( \frac{R}{3R} \right)^2 = \frac{g}{9} \]
Therefore, the new value of gravitational acceleration at height \(h = 2R\) is \(\frac{g}{9}\).
The time period \(T\) of a pendulum is related to the length \(L\) and the acceleration due to gravity \(g\) by:
\[ T = 2\pi \sqrt{\frac{L}{g}} \]
At height \(h = 2R\), the new time period \(T'\) will be:
\[ T' = 2\pi \sqrt{\frac{L'}{g'}} \]
Since the time period remains 2 seconds, we equate the time periods:
\[ 2 = 2\pi \sqrt{\frac{L'}{g/9}} \]
Squaring both sides:
\[ 1 = \pi^2 \frac{L'}{g} \]
Solving for \(L'\):
\[ L' = \frac{g}{\pi^2} \]
Substitute \(g = \pi^2 \, \text{m/s}^2\) into the equation:
\[ L' = \frac{\pi^2}{9\pi^2} = \frac{1}{9} \, \text{m} \]
Thus, the length of the second's pendulum at a height \(h = 2R\) is \(\frac{1}{9} \, \text{m}\).
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass $m$ from earth surface to infinity is $\frac{1}{2} \mathrm{mgR}$, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
The standard enthalpy and standard entropy of decomposition of \( N_2O_4 \) to \( NO_2 \) are 55.0 kJ mol\(^{-1}\) and 175.0 J/mol respectively. The standard free energy change for this reaction at 25°C in J mol\(^{-1}\) is (Nearest integer)
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
Consider the following sequence of reactions to produce major product (A):
The molar mass of the product (A) is g mol−1. (Given molar mass in g mol−1 of C: 12,
H: 1, O: 16, Br: 80, N: 14, P: 31)
During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is %.
(Given molar mass in g mol\(^{-1}\) of Ba: 137, S: 32, O: 16)