If pH $>$ pKa, the drug is more ionized; if pH $<$ pKa, it's less ionized.
Using the Henderson-Hasselbalch equation: \[ \text{pH} = \text{pKa} + \log \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \Rightarrow 5.2 = 4.2 + \log \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \Rightarrow \log \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) = 1 \Rightarrow \frac{[\text{A}^-]}{[\text{HA}]} = 10 \] This implies that $>$90% of the drug exists in ionized form. Hence, more than 50% is ionized.
The surface integral \( \int_S x^2 \, dS \) over the upper hemisphere
\[ z = \sqrt{1 - x^2 - y^2} \]
with radius 1 is ..........