Step 1: Understand the operators gradient (\(\nabla\)) and divergence (div or \(\nabla \cdot\)).
- The gradient of a scalar function \(\phi(x, y, z)\) is a vector field defined as:
\[
\nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}
\]
- The divergence of a vector field \(\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}\) is a scalar function defined as:
\[
\text{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}
\]
Step 2: Apply the divergence operator to the gradient of \(\phi\).
We need to find \(\text{div}(\nabla \phi)\), which is \(\nabla \cdot (\nabla \phi)\).
First, let's write out the components of \(\nabla \phi\):
\[
F_x = \frac{\partial \phi}{\partial x}, \quad F_y = \frac{\partial \phi}{\partial y}, \quad F_z = \frac{\partial \phi}{\partial z}
\]
Now, apply the divergence operator to this vector field:
\[
\nabla \cdot (\nabla \phi) = \frac{\partial}{\partial x} \left( \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial y} \right) + \frac{\partial}{\partial z} \left( \frac{\partial \phi}{\partial z} \right)
\]
Step 3: Simplify the expression.
The expression obtained in Step 2 can be written using second-order partial derivatives:
\[
\nabla \cdot (\nabla \phi) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
\]
Step 4: Recognize the Laplacian operator.
The expression \(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\) is the definition of the Laplacian of the scalar function \(\phi\), which is denoted by \(\nabla^2 \phi\) or \(\Delta \phi\).
Therefore,
\[
\text{div grad } \phi = \nabla \cdot (\nabla \phi) = \nabla^2 \phi
\]
Step 5: Match the result with the given options.
The result \(\nabla^2 \phi\) matches option (4).