We are given:
\[ p^3 = q^4 = r^5 = s^6 = k \Rightarrow p = k^{1/3}, \quad q = k^{1/4}, \quad r = k^{1/5}, \quad s = k^{1/6} \]
\[ pqr = k^{1/3} \cdot k^{1/4} \cdot k^{1/5} = k^{\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5}\right)} \]
Take LCM of denominators: LCM of 3, 4, and 5 is 60
\[ \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{20 + 15 + 12}{60} = \frac{47}{60} \Rightarrow pqr = k^{47/60} \]
Use the logarithmic identity: \( \log_b (a^n) = n \log_b a \)
\[ \log_k(pqr) = \log_k(k^{47/60}) = \frac{47}{60} \cdot \log_k k = \frac{47}{60} \cdot 1 = \frac{47}{60} \]
Now express the log in base \( k^{1/6} \):
\[ \log_{k^{1/6}}(pqr) = \frac{\log_k(pqr)}{\log_k(k^{1/6})} = \frac{\frac{47}{60}}{\frac{1}{6}} = \frac{47}{60} \cdot 6 = \boxed{\frac{47}{10}} \]
\[ \boxed{\frac{47}{10}} \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :