Step 1: Given relation.
We have \( p \sin \theta = q \cos \theta \).
Step 2: Divide both sides by \(\cos \theta\).
\[
\tan \theta = \dfrac{q}{p}
\]
Step 3: Express \(\sin \theta\) and \(\cos \theta\) in terms of \(p\) and \(q\).
Let us assume the hypotenuse to be \(\sqrt{p^2 + q^2}\).
Hence,
\[
\sin \theta = \dfrac{q}{\sqrt{p^2 + q^2}}, \quad \cos \theta = \dfrac{p}{\sqrt{p^2 + q^2}}
\]
Step 4: Find \(\csc \theta\).
\[
\csc \theta = \dfrac{1}{\sin \theta} = \dfrac{\sqrt{p^2 + q^2}}{q}
\]
Step 5: Conclusion.
The value of \(\csc \theta\) is \(\dfrac{\sqrt{p^2 + q^2}}{q}\).