If P(n) : \(2^n < n!\), then the smallest positive integer for which P(n) is true if
We test values of \(n\) starting from 1:
The smallest positive integer for which P(n) is true is 4.
Answer: (C) 4
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :