If P(n) : \(2^n < n!\), then the smallest positive integer for which P(n) is true if
We test values of \(n\) starting from 1:
The smallest positive integer for which P(n) is true is 4.
Answer: (C) 4
We test small values of $ n $:
The smallest positive integer for which P(n) is true is 4.
Answer: (C) 4
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is