If P(n) : \(2^n < n!\), then the smallest positive integer for which P(n) is true if
We test values of \(n\) starting from 1:
The smallest positive integer for which P(n) is true is 4.
Answer: (C) 4
We test small values of $ n $:
The smallest positive integer for which P(n) is true is 4.
Answer: (C) 4
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :