From recurrence, for odd \( n \):
\( a_n + b_n = p(pq)^{\frac{n-1}{2} - 1}(p+q) \).
Given \( p = \frac{1}{3}, q = \frac{2}{3} \), \( pq = \frac{2}{9} \), \( p+q = 1 \).
Thus:
\[
a_n + b_n = \frac{1}{3} \left( \frac{2}{9} \right)^{\frac{n-3}{2}}.
\]
We require \( a_n + b_n<0.01 \):
\[
\frac{1}{3} \left( \frac{2}{9} \right)^{\frac{n-3}{2}}<0.01.
\]
Multiply by 3:
\[
\left( \frac{2}{9} \right)^{\frac{n-3}{2}}<0.03.
\]
Take logs:
\[
\frac{n-3}{2} \log\left( \frac{2}{9} \right)<\log(0.03).
\]
Since log is negative, inequality reverses:
\[
\frac{n-3}{2}>\frac{\log(0.03)}{\log(2/9)}.
\]
Numerically: \(\log_{10}(0.03) \approx -1.52288\), \(\log_{10}(2/9) \approx -0.65321\).
Ratio ≈ 2.33 → \( \frac{n-3}{2}>2.33 \) → \( n - 3>4.66 \) → \( n>7.66 \).
Since \( n \) is odd, smallest odd \( n = 9 \) → but check actual value:
For \( n=9 \): \( \frac{1}{3} (2/9)^3 \approx 0.01096>0.01 \), fails.
Next odd \( n = 11 \): \( \frac{1}{3} (2/9)^4 \approx 0.00243<0.01 \), works.