Step 1 (Series $P$): Test the $n$th term.
\[ a_n=\frac{1}{(n\log n)^{1/n}}=\exp\!\left(-\frac{\ln n+\ln\ln n}{n}\right). \] Since $\displaystyle \frac{\ln n}{n}\to 0$ and $\displaystyle \frac{\ln\ln n}{n}\to 0$, we have \[ (n\log n)^{1/n}\to e^{0}=1 \Rightarrow a_n\to 1\neq 0. \] Hence the necessary condition for convergence fails; therefore \(\sum a_n\) diverges.
Step 2 (Series $Q$): Ratio test.
Let \(b_n=\dfrac{n^n}{(2n)!}\). Then \[ \frac{b_{n+1}}{b_n} =\frac{(n+1)^{n+1}}{(2n+2)!}\cdot\frac{(2n)!}{n^n} = \frac{(n+1)^{n+1}}{n^n(2n+2)(2n+1)} = \frac{(1+\tfrac1n)^n}{2(2n+1)}. \] As \(n\to\infty\), \((1+\tfrac1n)^n\to e\) and \(2(2n+1)\sim 4n\), so \[ \lim_{n\to\infty}\frac{b_{n+1}}{b_n}=\lim_{n\to\infty}\frac{e}{4n}=0<1. \] By the ratio test, \(\sum b_n\) converges. Final Answer: \(\boxed{\text{Option (D)}}\)