Step 1: Find vectors \(\vec{QP}\) and \(\vec{QR}\).
\[
\vec{QP} = P - Q = (3-1,\;2-4,\;6-5) = (2,-2,1)
\]
\[
\vec{QR} = R - Q = (3-1,\;5-4,\;3-5) = (2,1,-2)
\]
Step 2: Compute the dot product.
\[
\vec{QP}\cdot\vec{QR} = (2)(2)+(-2)(1)+(1)(-2) = 4-2-2 = 0
\]
Step 3: Conclude the angle.
Since the dot product is zero, the vectors are perpendicular.
Hence,
\[
\angle PQR = 90^\circ
\]